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Abstract-A numerical solution has been obtained for transient two-dimensional natural convection from 
a heated horizontal cylinder embedded in an enclosed porous medium. Non-Darcian effects are taken into 
consideration in the momentum equation, while the thermal dispersion effect is taken into consideration 
in the energy equation. The wall effect on porosity is approximated by an exponential function and its 
effect on thermal dispersion is modeled by a dispersive length. The governing equations in terms of the 
stream function, vorticity, and temperature are expressed in a body-fitted coordinate system, which were 
solved numerically by the finite difference method. Results are presented for the streamlines and isotherms, 
tangential velocity and temperature distributions, as well as the average Nusselt numbers at different values 
of Rayleigh number, dimensionless particle diameter, and Prandtl number. The non-uniform porosity 
effect tends to increase the temperature gradient near the wall while the thermal dispersion effect increases 
the effective thermal conductivity, both resulting in an increase in surface heat flux. The effect of thermal 
dispersion on natural convection in porous media at low to moderate Rayleigh number is small. With non- 
uniform porosity and thermal dispersion effects taken into consideration, the predicted average Nusselt 

numbers are found to be in better agreement with experimental data. 

1. INTRODUCTION 

IN RECENT years the problem of natural convection 

about a heated horizontal cylinder embedded in a 

porous medium has attracted a great deal of attention 

because of its wide range of applications in engin- 

eering and geophysics [IA]. Based on Darcy’s law 
and boundary layer approximations, Merkin [l] 
obtained a similarity solution for natural convection 
about axisymmetric and two-dimensional bodies of 
arbitrary shape in a constant porosity medium of 
infinite extent at high Rayleigh numbers. Using the 
same approach, Cheng [2] has obtained a similarity 
solution for natural convection about a heated hori- 
zontal cylinder at uniform temperature, with the fol- 
lowing expression for the average Nusselt number : 

Nu m = 0.565Ra’!*. m (1) 

In the above equation, Nu, and Ra, are the average 
media Nusselt number and the media Rayleigh 
number, which are defined as Nu, = LD/k,, and 
Ra, = K,~,p,DAT*//+x, respectively, where D is the 
diameter of the cylinder ; I? is the average heat transfer 

coefhcient ; g is the gravitational acceleration ; /If-, pf, 
and ,LL~ are the thermal expansion coefficient, density, 
and dynamic viscosity of the fluid respectively ; AT* 
is the difference between the wall temperature of the 
cylinder and the ambient temperature; k,,,, cc,,, and 
Km are the stagnant thermal conductivity, the effective 

thermal diffusivity, and the permeability of the porous 
medium, which are assumed to be constant in deriving 
equation (1). 

The first experimental investigation on natural con- 
vection about a horizontal cylinder (at uniform tem- 
perature) embedded in a porous medium was carried 
out by Fernandez and Schrock [3], who also per- 
formed a numerical solution of the problem based on 
the Darcy-Brinkman model in a constant porosity 
medium. Subsequently, Fand et al. [4] conducted a 
similar experimental investigation with different sizes 
of glass spheres saturated with water or silicone oil. 
A comparison of equation (1) with Fand et aZ.‘s exper- 
imental data [4] shows that the measured media 
Nusselt numbers are higher than those predicted by 
theory [2]. 

Numerical and experimental investigations of natu- 

3407 



3408 S.-W. HSIAO cv 01 

NOMENCLATURE 

A, B Ergun constants II*. ZI dimensional and dimensionless Darcy 

4, constant defined in equation (7) velocity components in the 

h dimensionless porous media shape x*-direction 

parameter, ED’/K I’* , r dimensional and dimensionless Darcy 

c constant in equation (9a) velocity components in the 

c, specific heat at constant pressure _r*-direction 

D cylinder diameter W half width of the reservoir 

DU Darcy number, K/D’ w*, M’ dimensional and dimensionless absolute 

4 particle diameter velocities 

F inertial coefficient .Y* , x dimensional and dimensionless 

9 gravitational acceleration horizontal coordinates 

H, height of the reservoir above the center J’*, J’ dimensional and dimensionless vertical 

of the cylinder coordinates 

H? depth of the reservoir below the center of V Laplace operator in the physical plane 

the cylinder a transformed Laplacc operator given by 

J Jacobian of coordinate transformation equation (29d). 

K permeability 

k,, thermal conductivity of the saturated Greek symbols 

media a, fl, ii transformation l’dctors given by 

1 dispersive length equation (25~) 

m the number of iteration a, thermal diffusivity of fluid 

NMr fluid Nusselt number, hD/k, %,I thermal diffusivity of the saturated 

Nu,, media Nusselt number, hD/k, porous medium 
Pr Prandtl number PI thermal expansion coefficient of fluid 
P, Q coordinate control functions 1: dimensionless particle diameter, d,,/D 

P pressure i: porosity 

Y surface heat flux 0 dimensionless temperature 

R%? media Rayleigh number. n angle measured from the upward vertical 

K,, gBrDAT*lvra, axis 

Rar fluid Rayleigh number, gpfD3AT*/vir, VI dynamic viscosity of fluid 

Ra, media Rayleigh number for constant heat VI kinematic viscosity of fluid 

flux, gBrKD~/2vr~,k,, 5. vl coordinates in the transformed plane 

&i effective Rayleigh number defined by PI density of fluid 

Himasekhar and Bau ti stream function 

r*. r dimensional and dimensionless radial n vorticity 
positions CO’ modified vorticity. 

rd distance between the cylinder center and 

the top of the box Superscripts 

r, distance between the cylinder center and ~ average quantities 
the side walls * dimensional. 

T* dimensional temperature 
Tc, T,* dimensional temperatures of the Subscripts 

cylinder and the enclosure f fluid phase 
t* dimensional time S solid phase. 

ral convection about a heated horizontal cylinder with 
constant heat flux have recently been performed by 
Himasekhar and Bau [5]. They found that at high 
Rayleigh numbers, the measured average Nusselt 
numbers are higher than those obtained from their 
numerical solutions, which are based on the assump- 
tions that Darcy’s law is applicable, and the effects of 
variable porosity and thermal dispersion are negli- 
gible. The discrepancy between theory and exper- 
iments at high Rayleigh numbers is attributed to the 

transition to a three-dimensional, time-dependent 
flow that they observed in their experiments. 

Similar discrepancies between theory and exper- 
iments have also been observed for natural convection 
heat transfer from other geometries embedded in a 
porous medium [2]. This discrepancy has prompted 
researchers to study other effects such as the non- 
uniform porosity and thermal dispersion, which were 
neglected in previous theoretical work. For example, 
the non-uniform porosity and thermal dispersion 
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effects in natural convection from a vertical flat plate 
in porous media have been investigated by Hong et a/. 

[6], while the non-uniform porosity effect on natural 

convection in a cavity has been studied by David et 
(11. [7]. It has been concluded that these effects become 
increasingly important when the ratio of the particle 
diameter to the characteristic length and the media 
Rayleigh number increases. 

In this paper, the effects of non-uniform porosity 
and thermal dispersion on natural convection about 
a heated horizontal cylinder embedded in an enclosed 

porous medium are studied numerically. Both uni- 
form wall temperature and uniform heat flux thermal 
boundary conditions on the cylinder are considered. 
The non-Darcian effects are taken into consideration 

in the momentum equation, while the thermal dis- 
persion effect is taken into consideration in the energy 
equation. The wall effect on porosity is approximated 
by an exponential function and its effect on thermal 
dispersion is taken into consideration by a dispersive 

length concept proposed by Cheng et al. [779]. The 
governing dimensionless equations in terms of stream 
function, vorticity, and temperature are expressed in 
a body-fitted coordinate system, which was solved 

by the finite difference method. The streamlines and 
isotherms, tangential velocity and temperature dis- 

tributions, as well as the local and average Nusselt 
numbers at different Rayleigh numbers, and dimen- 
sionless particle diameter are presented. It is found 
that the effects of non-uniform porosity and thermal 
dispersion tend to increase the surface heat flux. With 
these effects taken into consideration simultaneously, 
it is found that the predicted Nusselt numbers are in 

better agreement with experimental data [4, 51. 

2. MATHEMATICAL FORMULATION 

A horizontal circular cylinder of diameter D is 

embedded in an enclosed porous medium at Ty as 
shown in Fig. 1. The cylinder is suddenly heated at 
t > 0 and the convective heat transfer characteristics 
at t > 0 will be investigated. For a mathematical for- 
mulation of the problem, it is assumed that: (a) the 

saturated porous medium may be considered as a 

continuum, (b) the fluid flow and temperature dis- 

tributions are two-dimensional, (c) the fluid and the 
solid particles are in local thermal equilibrium, and 
(d) the Boussinesq approximation is applicable. With 
these assumptions, the macroscopic conservation 
equations for convective heat transfer in a variable 
porosity medium are [8. 91 

v.c* = 0 (2) 

prpe +v. (y)] = _vp*+/L,v2~* pi;* 

and 

“‘*“*’ +p,&(T* - T$,)Ec~ -Pr-- 
JK 

(3) 

&(P’:*)“+ (PC&(' --E)]T* 

+(pC,,)J*(C*T*) = V*[k,VT*] (4) 

where fi* and p* are the volume-averaged velocity 

vector and pressure; C,,, and C,,? are the specific heats 
of fluids and solid phases at constant pressure ; F is 
the inertial coefficient; E is the porosity, and k, is the 
effective thermal conductivity of the saturated porous 
medium, which is a superposition of the stagnant ther- 

mal conductivity (k,) and the dispersive conductivity 
(k,), i.e. k, = k,+k,. 

For a porous medium composed of packed spheres, 
the porosity s varies from 0.36 far from the wall to 
nearly unity at the wall. As shown by Vortmeyer and 
Schuster [IO], the variation of the porosity can be 
approximated by an exponential function of the form 

E = s, +(a,-_~,,) em ~‘~cr”~r~‘~“~ (5) 

where d, is the particle diameter, r* is the radial 
coordinate and r$ is the radius of the cylinder ; E, and 
s0 are the porosities at a location far away and on the 
wall while N, is an empirical constant. N, = 2 was 
used by most previous investigators [lo]. Recently, 
some investigators have suggested that a value of 
N, = 557 should be used instead [8, 9, 11, 121. 

For a packed-sphere bed, the permeability and the 
Forchhemier coefficient are related to the porosity by 

K = -_~diE’ B 

A(lT 
and F= ~~~~ 

JAE”2 
(6) 

where A and B are empirical constants. Ergun [13] 
found that A = 150 and B = 1.75, while Macdonald 
et a/. [14] found that A = 182 and B = 1.92. Most 
recently, Fand et al. [ 151 performed some experiments 
on pressure drop in tubes packed with different sizes 
of glass spheres, and determined that A = 182 and 
B = 1.92 based on the Ergun equation with a constant 
porosity equal to 0.36. In a recent paper, Cheng et al. 
[I21 reanalyzed Fand et d’s data based on a hydro- 
dynamically fully developed flow in a packed tube 
with a variable porosity model; they found that the FIG. I. Physical model and coordinate system. 
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calculated pressure drop matches with Fand et al.3 
data if the values of A = 215 and B = 1.92 are used 
in equation (6). 

The value of the stagnant thermal conductivity of 

the saturated porous medium can be computed 
according to the foi~owing expression. given by 
Zehner and Schluender [16] as 

where B, = 1.25 [( 1 -c)/s]‘“” and 1 = kc/k., with k,. 
and k, denoting the thermal conductivity of the fluid 
and the solid phaSC respectively. The value of k, for 
the glass beads is calculated based on the following 

expression [ 171 : 

k, = 1.00416+1.6736x IO- ‘7-*-4.184x IO-‘T;” 

(8) 

where T* is the temperature in “C and k, is expressed 
in Win’ “C’. 

The thermal dispersion conductivity for flow 
through a porous medium is given by [8,9] 

k, = C(pC,),j~?lld,, @a) 

where I is the dispersive length, which is given by 

while )i.* = (u*‘$o*~) ’ ’ and the value of the dis- 

persivity C = 0.02-0.04 was determined by a com- 
parison of theory and experiments for forced con- 
vection in packed columns 18, 91, Equations (2)-(9) 
are the governing equations for natural convection in 
a non-uniform porosity medium. 

Consider first the case where the wall temperature 
of the cylinder is suddenly raised to Tc, For this case. 

we introduce the following dimensionless variables : 

where G. Ed, Pr,., and Ras are the heat capacity ratio 

of the saturated porous medium to that of the fluid, 
the effective thermal diffusivity of the saturated 

porous medium, the Prandtl number, and the fluid 
Rayleigh number, which are defined as 

where 

Rclr = Ra, Da..(a,,,i’q) 

with Da, being the bulk Darcy number, defined as 

Da, = K, ID’ = 
p&3 

------’ 
A(1 --E,)I (1Sb) 

where 1~ = 4/U is the dimensionless particle diameter. 
The local Darcy number (Da) is related to the bulk 

Darcy number (Du, ) by 

Da = Da, I(” = Da, 
I 

Note that the inertial terms in equations (12) and (13) 
are important if the local value of ~~~(Da)~p~~ >> 1. 
This implies that the inertial term may be important 
near the wall, although it may be negligible away from 
the wall. Eliminating the pressure terms in equations 
(13) and (13), we can express the resulting equations 

in terms of stream function and vorticity as 

where D is the diameter of the cylinder, x1- is the 
thermal diffusivity of the fluid, and Tc, T,* are the 
temperatures of the cylinder and the enclosure respec- 
tively. In terms of the dimensionless variables, equa- 
tions (2)-(9) become 

+ + Ra,- Pr, ,“; (863) 
EU (12) 

( 17) 
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where the dimensionless stream function, vorticity 
function, and the modified vorticity function are 
defined as 

(19) 

Initially, the cylinder and the porous medium are at a 
uniform temperature T,*. Thus, the initial conditions 

of the problem are 

$=n=@=O, at t=O. (20a-c) 

The boundary conditions on the cylinder are 

$ = 0, 0 = 1, n = --$,?, at r* = ro* 

(21ac) 

while on the wall of the container they are 

II/ = 0 = 0, R = - $J~, on the vertical walls 

(22aac) 

II/ = 0 = 0. fi = - tiYV on the horizontal walls 

(23a-c) 

where rX is the radius of the cylinder. 

3. NUMERICAL PROCEDURE 

We now express the governing equations in terms of 

a body-fitted coordinate system. This can be achieved 
based on the method of automatic generation of curvi- 

linear coordinates developed by Thompson et al. [18]. 
The boundary-fitted physical coordinate system is 
created by solving the following system of Poisson 
equations : 

V’5 = P(tirl) (244 

v2t = P(5> ?I (24b) 

where P and Q are the coordinate control functions 
that provide the control of the mesh concentration 
[19, 201. Since it is desirable to perform all numerical 
calculations in the transformed plane, the dependent 
and independent variables must be interchanged in 
equations (24a) and (24b). The transformed equations 
are 

CLYDE - 2&,, + 6x,, +J’(Px< + Qx,,) = 0 (25a) 

~YYCC -2&s +6y,, +J’(Py< + Qv,, = 0 (25b) 

where 

3411 

a = x;+y;, p = X<Xs+y&, 

6 = x:+y;, J= xcy,,+x,,yt. WC) 

Note that the values of x and y on the boundaries of 
the (5, q) domain are prescribed. 

The transformed equations (25) are discretized over 
the mathematical plane using second-order central 
difference, and the resulting finite difference equations 
are solved with the successive over-relaxation (SOR) 
method. Once a grid is generated, the values of the 
coefficients a, /I, 6, and J, etc. are evaluated and stored 
for use in the solution of the governing equations. 

The governing equations (16)-(18) in terms of the 
transformed coordinates are 

p2* ZZ -fi (26) 

[( 

Pr, 
-xv ~ + F--,1;, E >I> Da J(Da) : 

+ 
Ra, Pr, 
J- [y,(“o)c -y&0),] 

and 

(27) 
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4j 3 

I”: 2 

I 

physical plane transformed plane 

FIG. 2. Coordinate trans~orn~ati~)~~ 

where u, I‘, and IV are given by 

u = CM,, -x,#;).i’J 

tion has been achieved, the local and the mean fluid 

(29a) 
Nusselt numbers (Nu, and II&) can be calculated as 

(29h) 

(29c) 

Nu, = ’ 
s 

II 
Nu, dfl (32b) 

The transformed Laplace operator in equations (26) x 0 

and (28) is where 0 is measured clockwise from the upward vcr- 

0’ = [Ct(?;;-22Br?l,l+(5(7,1,,+J-‘(P~;-Qc’,,)]lJ’. tical axis. The Iocal and average media Nusselt num- 
bers are defined as 

(29d) 

I%, = ;+ . Nu,,, = ‘- 
s 

A 
In terms of the transformed coordinates, the bound- Nu,, d/3. (33) 

ary conditions become 
n n 

It follows that 
tl = %n. : J/ = 0. 0 = I. R = -SI),~,~!.!’ (3Oa) 

tl = II,,,,: tj = 0, 0 = 1. i2 = -,S@,,,,i’JJ’ (30b) 
IC, 

Nu,, = k-- Nu,- and I%,,, = kk’ 
‘“7, 

N+ (34) 
111 , 

where v,,,,~ and ~,,,:,~ are the inner and outer boundaries 
in the transformed plane (Fig. 2). respectively. 

Equations (26)-(30) are discretized based on the 
finite difference method. A first-order forward differ- 
ence approximation is used for the time derivative and . 
a second-order central difference approximation is 

used for space derivatives. Finite difference equations 
for the stream function were solved by the successive 

over-relaxation method (SOR), while those for vor- 
ticity and temperature were solved by the alternating 
direction implicit (ADI) method. The mesh size 
required for a sufficiently accurate numerical solution 
depends on the values of the Rayleigh number and 
the Darcy number. A coarse grid was initially used 

and the grid size was gradually reduced until the value 
of the Nusselt number did not change in the third 
significant figure. It was found a grid of 65 x 80 (see 
Fig. 3) to be sufficiently accurate. AH computations 
were performed with a time increment of At = 10 ‘, 

The convergence criterion used for stream function. 
vorticity. and tcmperaturc is 

f”’ _ p I 

/-. j f “” ’ 
< IO -* 

where J’ denotes $, fi or 0, while 1~1 is the numb 
lhe iteration. After convergence of the numerical SOIU- FIG. 3. A typical grid of hS x 80 nodal points. 
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Table 1. Values of Raf and Ra, used in the numerical computations 
- 

dp (mm) I’ Ra, = 15 Ram = 273 Rar = IO6 

3413 

2 0.175 Ra, = 9.3 x IO5 Ra, = 1.69 x lo7 Ra, = 16.1 
3 0.262 Raf = 3.9 x lo5 Ra, = 7.18 x IO6 Ra, = 38.0 
4 0.349 Rar = 2.3 x 10’ Rnr = 4.23 x lo6 Rum = 64.5 
6 0.524 Raf = 1.03 x 10’ Raf = 1.88 x lo6 Ra, = 145.0 

The parameters shown in the governing equations 
given by equations (16)-( 18) and boundary con- 
ditions given by equations (20)-(22) are H,/D, H,/D, 
W/D, Ra,, Pr,, i,, 6, and Da, (or y). In addition, 
the values of empirical constants E,, Ed, W,, A and B 
must be prescribed. All of the numerical results pre- 
sented graphically in this paper were calculated with 
E, = 0.36, Ed = 0.9, N, = 7, A = 215 and B = 1.92. 
A parametric study with different values of other par- 
ameters was performed, and the results for surface 
heat flux will be presented either in terms of fluid 
Nusselt number (~Vtl,) or media Nusselt number (iVu,f 
vs fluid Rayleigh number (Rar) or media Rayleigh 
number (Ra,), whichever is appropriate. Compu- 
tations were also carried out for the cases corre- 
sponding to Fand et al.‘s experimental conditions. 
Table I lists the values of Rar corresponding to 
Ra, = 15 and 273 for D = 11.45 mm and different 
sizes of glass spheres saturated with water, which were 
used in Fand et al.‘s experiments [4]. The following 
symbols are used in the presentation of results: 
VPWD stands for variable porosity with thermal 
dispersion effect, while VPND stands for variable 
porosity without thermal dispersion effect ; CPWD 
stands for constant porosity with thermal dispersion 
effect, while CPND stands for constant porosity with- 
out thermal dispersion effect. 

Numerical results will first be presented for natural 
convection about a heated horizontal cylinder em- 
bedded in an infinite medium of constant porosity. 
From experimental observations, Fand et al. [4] have 
concluded that the enclosed medium shown in Fig. 1 
can be considered as infinite if H,jD = HzD = 11.1 
and W/D = 8.8. In order to check this conctusion, 
computations were carried out for this size of enclosure 
as well as for H,/D = H,lD = 22.2 and W/D = 8.8 
(with D = 11.45 mm) for water (Pr,. = 3.2) and glass 
beads (with d, = 3 mm) at different Rayleigh numbers 
with and without thermal dispersion effects taken into 
consideration. The results of the computation for the 
average Nusselt number with thermal dispersion 
effects as a function of time are presented in Fig. 4. It 
can be seen that (a) no noticeable differences in the 
mean Nusselt numbers are observed between the two 
sizes of the enclosure, which confirms Fand et ah’s 
observation [4] that the measured Nusselt numbers 
are inde~ndent of the enclosure size, implying an 
infinite porous medium, and (b) the time to reach 

- HbQ4WlW2.2 

----- Hl/D-K?/D-11.1 

Ram-273 

0 
0 0.06 0.12 0.18 0.24 0.3 

t 

FIG. 4. Effects of reservoir height and depth on transient 
Nusseh number variations based on the CPWD model. 

steady state increases as the Rayleigh number is 
decreased. For example, the times required to reach 
steady state for a water/glass beads system are 248 s 
at Ra, = 273 and 450 s at Ra, = 15. 

The effects of dimensionless particle diameter, ther- 
mal dispersion and no-slip boundary condition on the 
steady average media Nusselt number as a function 
of the media Rayleigh number in a constant porosity 
medium are shown in Fig. 5. Results based on Darcy’s 
law without boundary layer approximation and ther- 
mal dispersion are represented by dashed lines with 
y = 0. Results for y = 0.184 and 0.522 based on the 
Darcy-Brinkman model with and without thermal 
dispersion are also presented for comparison pur- 
poses. It is relevant to note that the assumption of 
a continuum may not be valid for the case y = 0.522. 
From this figure, it can be concluded that (1) the 
boundary layer approximation is valid if Ra, > 30, 
(2) the thermal dispersion effect is important only 

0.; 1 10 100 

J 
1000 

FIG. 5. Effects of thermal dispersion on steady average 
Nusselt number based on the CPWD and CPND models. 
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at high Rayleigh numbers with a high dimensionless 
particle diameter, and (3) the onset of free convection 
begins at Ra,, = I .9 in a constant porosity medium if 

Darcy’s law is used as the momentum equation. 

Nuturul conrection in a non-unjform porosit~~ medium 

To find the effects of the empirical constants A and 
B on the Nusselt number, computations were carried 
out based on the VPWD model with the values of A 

and B given by Ergun [13], Macdonald et (11. [ 141, 
Fand et al. [I51 and Cheng et al. [l2]. Results of the 
computations for the average media Nusselt number 

(Nu,) are listed in columns 668 of Table 2, which 
shows that (I) the effect of the values of A and B on 
the calculated Nusselt numbers is small. and (2) the 
calculated Nusselt numbers based on A = 2 I5 and 

B = 1.92 are closest to Fand et a/.‘~ experimental data. 
Note that Fand rt ~1,‘s experimental data for the 
media Nusselt number were evaluated based on the 

definition that Iyu ,,“, = in/k, with k, = ck, + (I - ~)k,. 
It follows that Nu,, = Nut,,(k,/k,, ) and Fand et ~1,‘s 
data in terms of Nu,,, are listed in Table 2. 

To investigate the effects of reservoir width on the 
heat transfer rate from the horizontal heated cylinder 
embedded in a variable porosity medium, compu- 
tations were also carried out for smaller values of 
W/D while keeping H,/D = HZ/D = 11.1. The results 
of the computation for the steady average fluid Nus- 
selt number (Nur) are presented in Fig. 6, which shows 

that the value of Nur decreases as the value of W/D 

decreases from I 1. I. 
Figure 7 is a comparison of the measured Nusselt 

numbers (Nu,) for d,, = 3 mm and the calculated Nus- 
selt numbers based on four theoretical models. It is 
shown that the effect of thermal dispersion increases 
the heat transfer rate for both constant porosity and 

variable porosity models. The values of the Nusselt 
number based on the constant porosity model are 
below experimental data. The results of the variable 

porosity model with thermal dispersion (VPWD) 
taken into consideration agree the best with expcr- 

Cases 

loo 7------ 

N;, 
10 

1 ,I ,,,I, / ,,,/I,,, 1 I,,,, d 
10' lo” 10" 10’ 

FG. 6. Effects of reservoir width on steady Nusselt number 
based on the VPWD model. 

100 _ 

_ r=0.268 (dp=3mm) 
- 0 Pand’s experimental data [4] 
- Present results : 

VpllD --- 
VPND - 
CPHD --- 
CPND ---- 

J 

FE. 7. A comparison of measured and calculated steady 
Nusselt numbers based on four models. 

imental data. The effects of thermal dispersion, how- 
ever, are small in constant and variable porosity 
models. 

Figure 8(a) shows a comparison of Fand cl u/.‘s 
measured Nusselt numbers for ci,, = 4 mm and 2 mm 

with calculated Nusselt numbers based on the VPWD 
model. The results ford, = 3 mm presented in Fig. 7 

Ru, Pr, 

Table 2. A comparison of calculated Nusselt numbers with Fand e/ u/.‘s [4] experimental results (: = 0.262) 

Present code 

lW3t 7.82 6.02 1.396 
2w3t 12.75 5.78 1.583 
3w3t 23.52 5.38 2.744 
4w3t 41.78 4.87 3.842 
5w3t 77.13 4.38 5.334 
6w3? 154.62 3.64 7.126 
7w3t 240.72 3.19 X.105 

Constant porosity 
without dispersion 

no-slip 
I: = 0.36 
A=215 
B = 1.92 

Variable porosity 
without dispersion 

no-slip 
E, = 0.9. E, = 0.36, 
A = 215. B = 1.92 

1.56 
2.02 
3.43 
4.95 
6.34 
8.43 
9.62 

Variable porosity 
with dispersion 

no-slip 
i;, = 0.9, i:, = 0.36 

A = 150 A = 182 A = 215 
B = 1.75 B = 1.92 B= 1.92 

Fand et (11:s 
experimental 

data [4] 

I.716 I.741 1.764 1.914 
2.2X3 2.302 2.321 2.546 
3.739 3.793 3.84X 3.9X6 
5.261 5.335 5.409 5.537 
6.856 7.071 7.286 7.509 
9.251 9.376 9.502 IO. 103 

10.345 10.48 10.723 I I.747 

7 The first digit indicates the test number; w = water: the final digit indicates the nominal glass sphere diameter (mm). 
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Fro. 8. A comparison of measured and calculated steady 
Nussclt numbers of a horizontal cylinder embedded in an 

infinite porous medium : (a) Nu, vs Rq; (b) Nu, vs Ru,,. 

are also plotted for comparison purposes. The rest&s 
in Fig. 8(a) are replotted in terms of the media Nusselt 

number vs the media Rayleigh number in Fig. 8(b). 
It is shown that (1) the predicted average Nusselt 
numbers with variable porosity and thermal dis- 
persion effects taken into consideration agree with 
experimental data, (2) the Nusselt number in the con- 
vection regime increases as the particle diameter is 
increased, and (3) the Nusselt number in the con- 
duction regime is relatively independent of the particle 

diameter. 
The effects of variable porosity and particle diam- 

eter on the average media Nusselt number (Nu,) as a 
function of time are depicted in Fig. 9(a) for Rum = 15 
and in Fig. 9(b) for Ru, = 273. It can be seen that the 
variable porosity effect is negligible at small times 
and its influence increases with particle diameter and 

Rayleigh number. 
The effects of variable porosity and thermal dis- 

persion on the tangential velocity and temperature 
profiles are shown in Fig. IO for Ra, = 247, Pr, = 3.2, 
and L$ = 3 mm at B = 45”. It is shown that both the 
variable porosity and thermal dispersion effects 
increase the tangential velocity and the temperature 
gradient, leading to an enhancement of surface heat 
flux. The variable porosity effect tends to reduce the 
thermal boundary layer thickness while the thermal 
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Prc. 9. Effects of variable porosity and particle diameter on 
transient average Nusselt number based on the CF’WD and 

VPWD models: (a) &z, = I5 ; (b) Ra, = 273. 
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FIG. IO. Effects of variable porosity and thermal dispersion 
on tangential velocity (a) and temperature distribution (b). 
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Table 3. Comparison of numerical results for Ra, = 50 with 
ff, = 7.4 and H2 = 14.6 

__ .._______-- -.I_ 

Himasekhar and Bau’s 
Source numerical solution [S] Present code 

~--. 
Number of grid 50 x 50 65 X 70 

points 
/VU, 4.442 4.453 

Z: 
4.444 4.458 
9.61 9.59 

-._____~__.~___._-_- 

dispersion has the opposite effect. Thus, near the wall 
the calculated temperature with thermal dispersion 
is lower than those without thermal dispersion; this 
behavior reverses away from the wall. 

The effects of non-uniform porosity and thermal 
dispersion on streamlines (left) and isotherms (right) 
at &zr = IO6 and y = 0.268 (d, = 3 mm) are illustrated 
in Fig. 1 I. With both non-uniform porosity and ther- 
mal dispersion effects taken into consideration, the 

strength of the vortices is the largest and the thermal 
energy is dispersed further away from the heated 
cylinder. 

5. COMPARISON WITH HIMASEKHAR AND 

BAU’S RESULTS [5] 

As mentioned earlier, Himasekhar and Bau [5] have 
performed a numerical and experimental investigation 
for natural convection from a horizontal cylinder at 

constant heat flux embedded in a rectangular porous 
box, which was insulated from three sides but not the 
top surface. Their numerical simulation is based on 
Darcy’s law with constant porosity and without ther- 
mal dispersion taken into consideration. 

The accuracy of the present numerical code can be 
assessed by comparing ~imasekhar and Bau’s com- 
puted Nusselt numbers with those based on the pre- 
sent code. To this end, the formulation of the problem 
presented in Sections 24 has to be modified as 
follows. First of all, Darcy’s law instead of equation 

(3) is used as the momentum equation. Secondly, the 
porosity is assumed to be constant. Thirdly, the ther- 
mal boundary conditions at the walls must be changed 
while the no-slip boundary condition on the walls 
cannot be imposed. Fourthly, the governing equations 
are expressed in terms of stream function and tem- 

perature while the vorticity function is not needed. 
The computed average Nusselt numbers Nu, (on the 
cylinder) and -a, (on the top surface of the box) 
based on the modified code for Ra, = 50 with a grid 

of 65 x 70 points in the transformed plane arc tabu- 
lated in Table 3. It is shown that these results arc 
in excellent agreement with the numerical results 

obtained by Himasekhar and Bau [S], who used a grid 
of 50 x 50 points in the transformed plane. 

A numerical solution was also obtained for natural 
convection about a horizontal cylinder with constant 
heat flux embedded in a porous medium with non- 

uniform porosity and thermal dispersion effects taken 
into consideration. For this case, the mathematical 
formulation is similar to those discussed in Sections 

2 and 3, except that the thermal boundary condi- 
tion at the cylinder is changed from constant wall 
temperature to the constant heat flux conditions. 
Computations were carried out corresponding to 

Himasekhar and Bau’s experimental conditions. A 
comparison of numerical results based on the modi- 
fied code with Himasekhar and Bau’s data for 
rd = 13.9 and Y, = 14.6 at four values of RCn- (see ref. 
[S] for the definitions of r,, T_ and /&f is presented 

in Table 4. It is shown that the computed Nusselt 
numbers with variable porosity and thermal dis- 
persion effects taken into consideration agree the best 
with experimental data. 

6. CONCLUDING REMARKS 

In this paper, various effects on natural convection 

about a heated horizontal cylinder in an enclosed 
porous medium are investigated numerically using a 
body-fitted curvilinear coordinate system. The fol- 
lowing conclusions can be drawn from the present 
study. 

(1) The time in reaching steady state increases as 

the Rayleigh number is decreased. 
(2) The variable porosity effect is negligible for 

smafl time and its influence increases with the particle 

diameter and Rayleigh number. 
(3) The non-uniform porosity effect at the wali 

tends to increase the temperature gradient adjacent to 
the wall while the thermal dispersion effect increases 

Table 4. Comparison of the calculated Nusselt numbers with Him~s~khar and Bau’s data [.5] 

Present code 

Constant porosity, Variable porosity 
Darcy’s law without dispersion, 

without dispersion no-slip 

I .45 1.72 
2.34 2.75 
2.93 3.48 
5.59 7.42 

-___l-__-l____ 
Variable porosity 
with dispersion, Himasekhar and 

no-slip Bau’s data [5] 

2.24 1 .!xq 
3.53 3.15t 
4.24 4.02t 
X.62 8.10f 

t These values are read from Fig. IO in ref. [S]. 
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ia) CPND (b) CPWD 

(cl VPNO (d) VPWCI 
FIG. 1 I. Isotherms (right) and streamlines (left) for steady natural convection about a horizontal cylinder 

embedded in a porous cavity at F&q = 10” and p = 0.268. 
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the thermal conductivity ; both of these effects result 
in the enhancement of surface heat flux. 

(4) The thermal dispersion effect on natural con- 
vection in a porous medium is small at low to mod- 
erate Rayleigh numbers. 

(5) The predicted Nusselt numbers with variable 

porosity and thermal dispersion effect taken into 
consideration simul~ncousiy agree better with exper- 

imental data. 
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